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Abstract—Network planning and management today is, and 

always will be, governed by hard limits in capacity that cannot be 

exceeded. These limits are clearly defined in the standards that 

define the technology. These limits have been well covered in 

previous papers. Operators today, however, are becoming 

increasingly aware of the need to additionally manage the 

network based on a user perceived experience. The experience is 

often defined by the download speed that the user can achieve, 

known as throughput. The challenge that operators have today is 

that traditional methods of modeling throughput do not work 

because of the large number of drivers that influence what 

throughput is. This creates a challenge when planning capacity 

strategies into the future based on customer experience. In this 

paper we provide examples that describe why traditional 

methods of modeling do not work. Furthermore, even if they did 

work at some point, we discuss why they are not practical for 

future use. 

 To break this barrier, we discuss the use and practicality of 

using artificial neural networks to accurately assess what the 

performance of a site will be in the future. The strong points of 

this approach are analyzed against future needs and the weak 

points are evaluated for awareness. Finally, a use case is provided 

for operationalizing this type of model into network planning 

strategies. This use case also discusses how this model can still be 

used if differentiation of services such as QCI (quality class 

indicator) is in use. In addition to the use case, a summary of the 

accuracy level that can be expected from such an approach is 

provided.  In this case, the forecasted throughput error on a 6 

month holdout set has a median error of 5% and a median 

absolute error of 27%. Work presented in this paper is primarily 

based on a feed forward network (FFN). The R language is used 

to access the toolsets offered by TensorFlow to prepare and 

model the data that is presented here. 

 
Index Terms—capacity planning, quality of experience (QoE), 

analytics, artificial neural networks. 

 

I.  INTRODUCTION 

etwork operators today are faced with ever growing data  

usage that is increasing at exponential rates. This growth 

means that forecasting and planning strategies must be under 

constant improvement to achieve the most effective spend 

rates for network capacity deployments. 

A common planning metric that is often used in creating 

these strategies is data volume. It has some clear advantages.  

It is technology agnostic for the most part and allows for 

forecasting across all times and platforms. As it is technology 

agnostic, it ties all the business units together with common 

ground. Marketing, sales, and engineering can all talk the 

 
 

same language. Each unit understands volume. Last but not 

least, technology standards can be used to calculate what the 

volume limits for a network resource should be [7][8]. These 

limits are also stable over time as they are hard limits that are 

not changed by user behavior changes. By extension, if 

volume over some time can be ascertained from the standards, 

then throughput capabilities can also be ascertained. However, 

this will define the throughput capability of the cell, not the 

throughput per user which defines the user experience. 

Combining these two concepts can define the operating 

boundaries, the box if you will, with which a cell can operate 

in. Figure 1 below can help illustrate this point. The volume 

and cell throughput are laws that cannot be exceeded while the 

throughput per user can take on an infinite number of 

possibilities and combinations. Throughput per user can also 

be influenced by the types of management techniques an 

operator chooses to employ. 

 

 
Fig. 1.  Example of performance boundaries.  X-axis is volume while y-axis is 

throughput.  The throughput per user can fall anywhere inside the box based 

on various conditions that occur. 

 

  On the x axis is the total volume delivered by a cell in a time 

period. The y axis is the total cell throughput with boundaries 

defined. Defining these boundaries is a fairly straight forward 

calculation. However, defining what the user experience (or 

per user throughput) is at any point within the boundaries is 

much more difficult and vary based on many conditions. For 

example, general trends may develop that show throughputs 

per user will generally decline as usage increases, see the 

dashed lines labeled with QCI and rate shaping. That is only 

generalized however.  It may also be that a point exists where 

there are few users with high data usage. In this case data 
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usage is high but since there are few users, the per user 

throughput is still acceptable. It could also be that another 

point exists where there are many, many users with relatively 

small usage per user. In this case, volume limits may not be 

reached but the throughput per user is low. 

In this area of planning, volume gives us our hard limits and 

sets concrete expectations. It ties engineering to the rest of the 

business units and is a stable limit over time. However, per 

user throughput brings an additional element that makes it 

possible to make the best decisions possible for capacity 

planning. Both reference points are needed to make quality 

decisions, but how do you forecast throughput into the future? 

In order to forecast throughput you must first be able to model 

it from historical data and metrics from the network. It turns 

out, that is much easier said than done. In the next section we 

will discuss the challenges of modeling throughput with 

traditional methods followed by a machine learning solution 

which is capable of handling this task. Lastly we will discuss 

how the machine learning model and current forecasting 

techniques can be used to forecast the per user throughput into 

the future. 

 

II.  CURRENT CHALLENGES 

Traditional, first step approaches to modeling these types of 

problems is often simple linear regression. As volume is a 

business requirement for forecasting input (this is what ties the 

network to the business units) it can be helpful to first 

understand the relationship between volume and the 

throughput per user. For this purpose we offer figure 2 below 

for a 5 MHz channel on a single vendor.  Both volume and 

throughput are being measured at the PDCP (packet data 

convergence protocol) layer and are measured over a one hour 

reporting period.   

 

 
Fig. 2.  Throughput given volume example 

 

This illustration reveals that volume alone, while general 

trends can be seen, is not going to be a good predictor of what 

per user throughput is going to be. There are clearly other 

factors at play that are heavily influencing throughput per 

user. 

 

The next natural step is to bring in more metrics or features 

that can add clarity and value. In LTE this could include many 

things such as RF quality, hardware type, or resource 

utilization levels. For our purposes here we will discuss 

physical resource block (PRB) utilization, physical downlink 

control channel (PDCCH) utilization, and channel quality 

indicators (CQI). With these indicators a multi-variate model 

approach can be built using methods from [4]. By developing 

the model with a training data set and a test data set, we can 

understand how well this model would perform.  The data set 

used to train a multivariate approach had 25% of the data 

points withheld as a test set. The other 75% of points were 

used to train the model. By applying the resulting model to the 

25% of data points withheld from training, we can understand 

how well the model performs on unknown data sets. By 

comparing the predicted value from the model to the actual 

measured throughput value in the test set, we can understand 

the magnitude of the error and where the errors occur. Figure 

3 below illustrates the difference in the actual throughput 

versus the predicted throughput observed in a test data set. 

 
Fig 3.  A comparison of the actual vs predited throughput using a multivariate 

regression approach. 

 

In this case the correlation factor was actually measured at 

0.84. This indicates that the model may have some level of 

explanatory power.  This however, simply means that a 

change in volume can explain a significant percentage of the 

change in throughput.   However, we are more interested in 

the predictive power of the model, particularly in a certain 

operating region.  Let’s consider the application and use case 

for a moment. An operator would begin to be concerned when 

throughput per user starts to get low. Let’s assume for a 
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moment that threshold of concern is 1 Mbps. Does this model 

predict well when the 1 Mbps threshold is crossed? It does 

not. In fact, at lower throughputs, the predicted throughputs 

are deep into the negative range which is not a valid result. 

These results begin to illustrate the complexities of what 

makes up the throughput per user performance. Other steps are 

also applied such as transforms and scaling, only to arrive at 

the same result. 

Let’s also assume that we could better classify the data. For 

example we could classify the data by vendor type, bandwidth, 

CQI, and loading level to create separate training sets. 

Assuming that gave acceptable results, an operator would have 

to maintain an enormous library of models in which each 

model would need to be maintained and tuned on an 

individual basis. Additionally, that approach would not be 

well suited to handle networks of the future which we will 

discuss in a later section and will touch on measures taken to 

manage the user experience. 

The simple lesson we can learn from this short example is 

that there are many inputs required to model throughput. More 

than what traditional modeling methods are able to handle 

effectively. But how does an operator make progress toward 

this goal? Artificial neural networks are proposed as a 

solution. We will start with a brief introduction to artificial 

neural networks in the following section which will allow 

operators to feed a large number of inputs into the model to 

create a model that has much more predictive power to give 

expected throughputs. 

 

III.  INTRO TO ARTIFICIAL NEURAL NETOWORKS 

An artificial neural network (ANN) is a machine learning 

algorithm that can solve some of the most complex problems 

known to date. ANN is at the core of revolutions like artificial 

intelligence (AI), deep learning, self-driving cars, and more. 

The word “neural” is used to describe this method because the 

method is often thought of as “learning” from data sets much 

in the same way as our own human brains learn. Figure 4 is a 

visual representation of a neural network in which you can see 

nodes (i.e. neurons). A series of nodes makes up a layer.  

Together, these nodes and layers make up a neural network[1]. 

 

 
Fig. 4.  Example of the architecture within an artificial neural network model. 

 

Under the hood, each node takes in a set of data and uses 

linear algebra and matrix math to assign the combination of 

data a weighting. The weighting of the nodes in each layer is 

then provided to the nodes in the next layers [1]. Through a 

series of iterations and activation functions, the neural network 

“learns” the patterns in the data. Go through enough iterations 

and the machine learning model will literally memorize the 

data [2][3][6]. This is called over fitting and is not discussed 

in this paper but proper steps should be taken to strictly avoid 

overfitting of models. 

The illustration shown in figure 4 only shows 8 inputs to the 

neural network that can then be used to predict a single output. 

Neural networks, however, are able to accept many inputs and 

still provide highly accurate models, even thousands of inputs 

in some cases. Just as it can take in many inputs, neural 

networks can also provide one or many outputs. The ability to 

provide many outputs is of tremendous value for our use case 

and will discuss why later.   

While neural network models can provide spectacular 

results given complex data sets, they are not without 

weakness. In current modern tool sets, neural network models 

are a bit of a “black box” approach. Because of the highly 

complex math involving linear algebra, matrix math, and the 

sheer number of calculations under the hood, it is difficult to 

reverse engineer a neural network model. Another way to say 

this is, it is difficult to understand why a machine learning 

algorithm made a particular decision. There is much work in 

the academia and research space to overcome this but most of 

this work is in the development phase at the time of this 

writing. 

 

IV.  APPLYING ANN  

In this section we will apply an ANN to a data set and 

illustrate its performance. For this writing, the Keras package 

is being used in R, to access the TensorFlow backend. The 

methods used are nearly identical to what is provided in [3]. 

TensorFlow is a language specifically designed to do machine 

learning. It was originally developed by Google and made 

available freely as open source software in 2016. 

The following examples will apply a regression approach to 

machine learning utilizing a (64,64,64,32,16,1) network with a 

rectified linear unit activation function. This implies that the 

ANN input layer is 64 nodes wide, it has six layers total, and 

the last layer only has one output node. Inputs and features to 

this model will include CQI, PRB, Volume, PDCCH, and 

users. 

The data set used for training in this example contains 

64,000 points from a 5MHz network that is stratified across 

loading levels to obtain equal distribution of points across all 

loading levels. It is the same data set shown in the multivariate 

regression example previously. 

Furthermore, the data set is broken into a training set and a 

test set.  25% of the points are withheld to make up the test set 

and 75% of the points are retained training, just as was done 

previously. 
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For this paper, the training is allowed to run for 10 epochs.  

More can be learned on this and the dangers of over fitting 

from Allaire in [3]. 

To prepare the data for the neural network, standard scaling 

practices are followed per the methods in [3]. This transforms 

the data of each metric to form a distribution of points 

normally distributed around a mean of zero so that scales of 

each metric are similar.   

Upon completion of the training period, the model is applied 

to the test set. This is an important step in the process as the 

test set is a completely unknown set of data. This will provide 

guidance on how well the model will generalize to unknown 

data sets. Since the actual measured values are known in the 

test data set, we can compare the measured values to the 

predicted values to understand the deltas. To understand this it 

is helpful to look at two metrics, mean error and mean 

absolute error. Mean error will indicate whether the model is 

generally under predicting or over predicting. Mean absolute 

error (MAE) will indicate the magnitude of the errors (without 

direction) to reveal the overall accuracy. 

Upon completing the training period and applying the model 

to the test set, we are able to see that the mean error of the 

model on the test set is -31 kbps and the MAE is 482 kbps. 

Figure 5 helps visualize this by plotting the predicted values 

against the measured values. If the performance of the model 

was perfect, all the points would fall on a line with a slope of 1 

as shown by the yellow line. 

 

 
Fig 5. Comparison of measured values (x-axis) to values predicted by the ANN 

model (y-axis) 

 

Comparing these results to the traditional methods of the 

previous discussion, the model already looks much better. 

How well does it perform in the area of interest though as 

discussed previously? Let’s assume a 1 Mbps threshold again.  

To inspect this closer we use figure 6 which provides a 

narrowed view of the 0 to 2 Mbps region and provides it as a 

boxplot for ease of interpretation. At a 1 Mbps measured 

value, the error is +/- 150 kbps, much better than achieved 

previously. 

 

 
Fig. 6.  Comparison of measured throughput values to ANN model predicted 

values.  In units of kbps. 

 

Assuming this level of performance is acceptable, the model 

could be deployed to any platform or language utilizing the 

TensorFlow backend. This includes R, Python, and of course 

TensorFlow itself [3]. If these results are not deemed to be 

acceptable, further work may be needed. This could include 

modifying the neural network architecture to add more layers 

or nodes, although improvements from this will depend highly 

on the data set and type of problem. It may mean adding more 

or different inputs to the model. Other methods prior to 

applying machine learning could also be employed to ensure 

the model is using the metrics which are the largest 

contributors to predicting throughput so that you may choose 

the top N predictors for neural network inputs. In general 

using the least number of predictors required to achieve usable 

results is recommended, particularly when applying these 

results to forecasting which is discussed in the next section. 

 

V.  FORECASTING THROUGHPUTS  

Forecasting at its simplest is using a time series to predict 

the future.  This often involves simple to complex algorithms. 

A common approach in many industries, telecom included, is 

to use approaches such as seasonally adjusted ARIMA models 

or exponential smoothing (ETS) [9][10]. If this is generally 

accepted in practice, why then, can we not forecast throughput 

itself as a simple time series if we have historical data?   

While it is not the focus of this paper, throughput as a 

function of load has an exponential decay to it based on many 

factors. This by itself could probably be overcome. However, 

the rate of this decay depends on many factors such as, but not 

limited to: hardware, bandwidth, channel quality, and vendor 

type just to name a few. There would be an infinite number of 

“curves” that would have to be indexed and stored for later 
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retrieval. Traditional methods of ARIMA and exponential 

methods will tend towards linear forecasts (seasonal 

components aside). Furthermore, they are heavily affected by 

any trends that develop late in the time series. They are 

therefore not well suited by themselves to predict throughput 

well into long term time horizons. 

ARIMA and smoothing methods, however, do work well on 

predicting individual metrics which do tend to have linear 

growth with some seasonal component (excluding outside 

influences) such as volume, PDCCH, PRB, users, etc. With 

this in mind, the individual metrics can be forecasted into the 

future. Using the neural network model constructed 

previously, forecasted metric values can be fed to the model to 

get future predicted throughputs. A visualization of this flow 

can be seen in figure 7. 

 

 
Fig. 7. Example of forecasted metrics being fed into a neural network model 

to produce future forecasted throughput values.  

 

VII.  PERFORMANCE 

To quantify the accuracy performance of using ANN 

models in forecasting as previously described, an analysis was 

completed on a set of 10,000 random cells. Two years of 

monthly data was available as historical data for metrics 

discussed previously (including throughput). A time series 

forecast was created for each metric for each cell using 18 

months of data while the most recent six months of data was 

used as a holdout set. 

Using models tuned with the methods previously discussed, 

the ANN models are applied to the forecasted metrics for each 

cell. This provides a forecasted throughput value alongside a 

known throughput value. Comparing these two values will 

quantify the amount of error. For this discussion, a positive 

value of error will indicate over-forecasting while a negative 

value will indicate under-forecasting. Table 1 below 

summarizes these results as a percentage of error. The “Time 

Series” method utilized a multivariate ARIMA method that 

forecasted the individual metrics as well as throughput.  The 

“ANN on TS” method applied a neural network model tuned 

as shown in section four to the individual metrics that were 

forecasted using the same multivariate approach. 

  

 

 

Method 

Mean 

Error % 

Median 

Error % 

Mean 

Abs 

Error % 

Median 

Abs 

Error % 

Time Series -5.0% 4.8% 43.0% 31.0% 

ANN on TS 20.0% 5.0% 37.0% 27.0% 

Table 1.  Summary of results comparing time series forecasting and 

application of ANN models to the time series. 

 

The results from table 1 imply that the median errors are 

nearly the same when comparing time series only forecasting 

to use of ANN models. However the mean error also 

illustrates that the bias of the time series only forecasting is to 

under forecast while the bias of the ANN models is to over 

forecast. In this case it is important to be clear that the time 

series only forecast would trigger more capacity triggers as it 

is driving throughputs down more aggressively. The 

application of the ANN model would trigger less capacity 

needs because it is biased towards maintaining higher 

throughput due to slight over forecasting. Somewhere in 

between is where the reality will be. 

Given the above interpretation, an illustration of the general 

bias can be provided. In figure 8 below, a sample forecast is 

provided. “Historical” values are the actual historical values of 

the throughput. “Thput_ANN_Historical” is the predicted 

throughput from the ANN model using historical metrics. In 

this case, the throughput model performs very well on known 

historical metrics. Each of those metrics is forecasted as a time 

series. The throughput itself is also forecasted as a time series 

and provided in figure 8 as “forecasted”. The ANN model is 

also applied to the forecasted metrics and provided as 

“Thput_ANN_Forecasted”. 

 

 
Fig. 8.  Example scenario comparing response of a time series only forecast 

to that of a time series forecast with ANN applied. 

 

Through this illustration in figure 8, it is shown that the time 

series only forecast picks up on a recent decline in the 

throughput time series and predicts a more aggressive decline 

than when the ANN is applied. The ANN model takes into 

account the rate of growth of all the other metrics and predicts 

that the decline in throughput will not be as aggressive and the 

rate of decline will actually slow down as time goes on. 

During testing, inspection of thousands of these cells revealed 

this same scenario across the board. 

 

VIII.  EXPECTATIONS 

It is important to understand the expectations of ANN 

modeling and be aware of what it can and cannot be expected 
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to do. As discussed previously, an ANN model is somewhat of 

a black box approach. It is difficult to extract why a model 

made the decision that it did. For example, it would not be 

possible to generalize from the model what an increase in a 

single metric would do to throughput values. One can arrive at 

the answer by transforming the data and re-applying the model 

to obtain new outputs. However, it is not possible to come up 

with a static description of what happens under certain 

conditions. This may not be an issue for the use case we have 

discussed here, but what if your model must be clearly 

understood and clearly interpretable? For example, what if 

regulatory requirements required that a company must be able 

to explain why and how a model behaves for each specific 

piece of criteria? This is the case for industries such as credit 

ratings [3]. In this case, ANN models may be powerful tools, 

but they cannot be used due to the lack of interpretability 

required by regulation. 

In terms of overall maintenance, these models are also not a 

deploy-and-walkaway scenario either, at least for the proposed 

use case. Behaviors may change over time. It is not 

necessarily expected that the model needs to be trained before 

each use, but it should be validated against a new test data set 

at a minimum. This validation process could even be 

automated into reports to speed the process but an engineer 

must still look at it and assess model performance. 

Appropriate thresholds could be applied to determine ahead of 

time that the model will need to be retrained whenever it falls 

outside a certain range of accuracy. This retraining process 

could be as simple as pulling more recent data to train from or 

could require adding new metrics to the training data.  

 

VIII.  OTHER APPLICATIONS  

The power of neural network modeling lies not only in its 

ability to accurately model throughput, but also in its vast 

flexibility. If new metrics become necessary, they can quickly 

be added to the model and the model can be redeployed. Also 

recall that the model can have multiple outputs. 

The flexibility of the model in this regard is important to 

operators. Operators are becoming more active in shaping the 

network experience with things like rate shaping, service 

differentiation, deep packet inspection to prioritize services, 

etc. Other concepts are also beginning to emerge that have not 

been implemented yet such as 5G, network slicing, etc. These 

tools, while very useful to the operators and beneficial to 

users, makes modeling throughputs all that more complex 

because active interventions are taking place that would 

otherwise be extremely difficult to account for in traditional 

methods. With a little creativity, most of these interventions 

can usually be inserted into data sets as features to be used in 

training a neural network model [3]. 

In the case of prioritization, QCI (quality class indicator) 

management can be an effective tool. However, this means an 

operator must be able to predict throughput for each QCI for it 

to work. Implementation and configuration strategies for 

doing this are not in the scope of this paper and could be an 

entire topic in itself. In the context of this paper, this means an 

operator must produce multiple outputs from one model. That 

is, one throughput per user prediction for each QCI class. In 

current 4G implementations, this means a minimum of 9 

outputs from a single model and possibly more depending on 

operator implementations. As we have already discussed, this 

is very possible for neural networks. Certainly, more inputs 

will be required to arrive at this as there may be separate 

inputs for each QCI class for metrics such as volume, users, 

etc. If we started with 8 inputs, and provide QCI metrics for 3 

of them, the number of inputs increases to 32. This 

significantly increases the number of inputs to the model but 

neural networks are well suited to handle this. This begins to 

demonstrate that neural networks may be a nice to have tool 

for now, but will become an essential requirement for 

planning in the future. 

In the case of concepts like network slicing, the network is 

virtualized and appears as if it’s an entire network dedicated to 

a particular user group. Each group may have their own 

behaviors and growth rates. However, they still share the same 

physical resources and therefore must be considered as a 

whole when developing capacity planning strategies. It 

remains to be seen how many network “slices” might exist in 

the future, but let’s consider only three slices with QCI 

implementations on each. We stated previously that QCI 

implementations by itself increase the number of inputs to 32 

and outputs to 9. But now we have three network slices to 

contend with. We now have 96 inputs and 27 outputs for every 

single cell in the network. This is of course without even 

considering 5G which may also share radios, basebands, and 

other types of hardware. 

 

IX.  CONCLUSIONS  

Neural networks provide an amazing opportunity to solve 

problems that would have been otherwise unsolvable using 

traditional methods. The only way to solve these in the past 

was to literally have an engineer review each case and apply 

their knowledge of the network and market space to make an 

educated, fact based decision. Looking into the future as 

networks become far more complex, this is not sustainable nor 

is it effective. 

In this case the power of neural networks will not replace an 

engineer. Rather, it will augment the engineer’s ability to 

make quicker, more educated decisions, and also do it more 

consistently. It allows the engineer to scoop the complexity 

into the model to keep it from becoming a distraction. The 

complexity is still there, and will continue to get more 

complex, it is just allowing the engineer to focus more on the 

outputs and results. It is still important for each engineer to 

understand these complex interactions. The model can be 

revisited and even trained in a supervised fashion in real time 

if needed. The important thing is that the model can be 

revisited and retrained on an as needed basis and the engineer 

does not need to consider or store every bit of the information 

for every single decision that is made for every cell during the 

capacity planning process. 

Lastly, while forecasting accuracy itself is not within the 

scope of this paper, it can’t be left unsaid that the effectiveness 

of this work is dependent on the accuracy of the forecasting 
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methodologies. Every operator should have a good 

understanding of what they are able to expect (and not expect) 

from their forecasting algorithms in terms of accuracy. While 

ARIMA and ETS methods are common solutions for many 

industries, neural networks can also do time series forecasting.  

Feed forward networks (FFN) were the type of neural network 

used in this paper. However, recurrent neural networks (RNN) 

have been very popular in many forecasting competitions and 

often take first place or top spots among such events. Study of 

forecasting accuracy and modern day RNN’s could be an area 

of study that could extend this work to further enhance its 

effectiveness 
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