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Abstract—Network planning and management today is, and
always will be, governed by hard limits in capacity that cannot be
exceeded. These limits are clearly defined in the standards that
define the technology. These limits have been well covered in
previous papers. Operators today, however, are becoming
increasingly aware of the need to additionally manage the
network based on a user perceived experience. The experience is
often defined by the download speed that the user can achieve,
known as throughput. The challenge that operators have today is
that traditional methods of modeling throughput do not work
because of the large number of drivers that influence what
throughput is. This creates a challenge when planning capacity
strategies into the future based on customer experience. In this
paper we provide examples that describe why traditional
methods of modeling do not work. Furthermore, even if they did
work at some point, we discuss why they are not practical for
future use.

To break this barrier, we discuss the use and practicality of
using artificial neural networks to accurately assess what the
performance of a site will be in the future. The strong points of
this approach are analyzed against future needs and the weak
points are evaluated for awareness. Finally, a use case is provided
for operationalizing this type of model into network planning
strategies. This use case also discusses how this model can still be
used if differentiation of services such as QCI (quality class
indicator) is in use. In addition to the use case, a summary of the
accuracy level that can be expected from such an approach is
provided. In this case, the forecasted throughput error on a 6
month holdout set has a median error of 5% and a median
absolute error of 27%. Work presented in this paper is primarily
based on a feed forward network (FFN). The R language is used
to access the toolsets offered by TensorFlow to prepare and
model the data that is presented here.

Index Terms—capacity planning, quality of experience (QoE),
analytics, artificial neural networks.

I. INTRODUCTION
N etwork operators today are faced with ever growing data
usage that is increasing at exponential rates. This growth
means that forecasting and planning strategies must be under
constant improvement to achieve the most effective spend
rates for network capacity deployments.

A common planning metric that is often used in creating
these strategies is data volume. It has some clear advantages.
It is technology agnostic for the most part and allows for
forecasting across all times and platforms. As it is technology
agnostic, it ties all the business units together with common
ground. Marketing, sales, and engineering can all talk the

same language. Each unit understands volume. Last but not
least, technology standards can be used to calculate what the
volume limits for a network resource should be [7][8]. These
limits are also stable over time as they are hard limits that are
not changed by user behavior changes. By extension, if
volume over some time can be ascertained from the standards,
then throughput capabilities can also be ascertained. However,
this will define the throughput capability of the cell, not the
throughput per user which defines the user experience.
Combining these two concepts can define the operating
boundaries, the box if you will, with which a cell can operate
in. Figure 1 below can help illustrate this point. The volume
and cell throughput are laws that cannot be exceeded while the
throughput per user can take on an infinite number of
possibilities and combinations. Throughput per user can also
be influenced by the types of management techniques an
operator chooses to employ.

Throughput

Data Volume

Fig. 1. Example of performance boundaries. X-axis is volume while y-axis is
throughput. The throughput per user can fall anywhere inside the box based
on various conditions that occur.

On the x axis is the total volume delivered by a cell in a time
period. The y axis is the total cell throughput with boundaries
defined. Defining these boundaries is a fairly straight forward
calculation. However, defining what the user experience (or
per user throughput) is at any point within the boundaries is
much more difficult and vary based on many conditions. For
example, general trends may develop that show throughputs
per user will generally decline as usage increases, see the
dashed lines labeled with QCI and rate shaping. That is only
generalized however. It may also be that a point exists where
there are few users with high data usage. In this case data
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usage is high but since there are few users, the per user
throughput is still acceptable. It could also be that another
point exists where there are many, many users with relatively
small usage per user. In this case, volume limits may not be
reached but the throughput per user is low.

In this area of planning, volume gives us our hard limits and
sets concrete expectations. It ties engineering to the rest of the
business units and is a stable limit over time. However, per
user throughput brings an additional element that makes it
possible to make the best decisions possible for capacity
planning. Both reference points are needed to make quality
decisions, but how do you forecast throughput into the future?
In order to forecast throughput you must first be able to model
it from historical data and metrics from the network. It turns
out, that is much easier said than done. In the next section we
will discuss the challenges of modeling throughput with
traditional methods followed by a machine learning solution
which is capable of handling this task. Lastly we will discuss
how the machine learning model and current forecasting
techniques can be used to forecast the per user throughput into
the future.

Il. CURRENT CHALLENGES

Traditional, first step approaches to modeling these types of
problems is often simple linear regression. As volume is a
business requirement for forecasting input (this is what ties the
network to the business units) it can be helpful to first
understand the relationship between volume and the
throughput per user. For this purpose we offer figure 2 below
for a 5 MHz channel on a single vendor. Both volume and
throughput are being measured at the PDCP (packet data
convergence protocol) layer and are measured over a one hour
reporting period.
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Fig. 2. Throughput given volume example

This illustration reveals that volume alone, while general
trends can be seen, is not going to be a good predictor of what
per user throughput is going to be. There are clearly other

factors at play that are heavily influencing throughput per
user.

The next natural step is to bring in more metrics or features
that can add clarity and value. In LTE this could include many
things such as RF quality, hardware type, or resource
utilization levels. For our purposes here we will discuss
physical resource block (PRB) utilization, physical downlink
control channel (PDCCH) utilization, and channel quality
indicators (CQI). With these indicators a multi-variate model
approach can be built using methods from [4]. By developing
the model with a training data set and a test data set, we can
understand how well this model would perform. The data set
used to train a multivariate approach had 25% of the data
points withheld as a test set. The other 75% of points were
used to train the model. By applying the resulting model to the
25% of data points withheld from training, we can understand
how well the model performs on unknown data sets. By
comparing the predicted value from the model to the actual
measured throughput value in the test set, we can understand
the magnitude of the error and where the errors occur. Figure
3 below illustrates the difference in the actual throughput
versus the predicted throughput observed in a test data set.
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Fig 3. A comparison of the actual vs predited throughput using a multivariate
regression approach.

In this case the correlation factor was actually measured at
0.84. This indicates that the model may have some level of
explanatory power. This however, simply means that a
change in volume can explain a significant percentage of the
change in throughput. However, we are more interested in
the predictive power of the model, particularly in a certain
operating region. Let’s consider the application and use case
for a moment. An operator would begin to be concerned when
throughput per user starts to get low. Let’s assume for a
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moment that threshold of concern is 1 Mbps. Does this model
predict well when the 1 Mbps threshold is crossed? It does
not. In fact, at lower throughputs, the predicted throughputs
are deep into the negative range which is not a valid result.

These results begin to illustrate the complexities of what
makes up the throughput per user performance. Other steps are
also applied such as transforms and scaling, only to arrive at
the same result.

Let’s also assume that we could better classify the data. For
example we could classify the data by vendor type, bandwidth,
CQI, and loading level to create separate training sets.
Assuming that gave acceptable results, an operator would have
to maintain an enormous library of models in which each
model would need to be maintained and tuned on an
individual basis. Additionally, that approach would not be
well suited to handle networks of the future which we will
discuss in a later section and will touch on measures taken to
manage the user experience.

The simple lesson we can learn from this short example is
that there are many inputs required to model throughput. More
than what traditional modeling methods are able to handle
effectively. But how does an operator make progress toward
this goal? Artificial neural networks are proposed as a
solution. We will start with a brief introduction to artificial
neural networks in the following section which will allow
operators to feed a large number of inputs into the model to
create a model that has much more predictive power to give
expected throughputs.

1. INTRO TO ARTIFICIAL NEURAL NETOWORKS

An artificial neural network (ANN) is a machine learning
algorithm that can solve some of the most complex problems
known to date. ANN is at the core of revolutions like artificial
intelligence (Al), deep learning, self-driving cars, and more.
The word “neural” is used to describe this method because the
method is often thought of as “learning” from data sets much
in the same way as our own human brains learn. Figure 4 is a
visual representation of a neural network in which you can see
nodes (i.e. neurons). A series of nodes makes up a layer.
Together, these nodes and layers make up a neural network|[1].

Fig. 4. Example of the architecture within an artificial neural network model.

Under the hood, each node takes in a set of data and uses
linear algebra and matrix math to assign the combination of
data a weighting. The weighting of the nodes in each layer is
then provided to the nodes in the next layers [1]. Through a
series of iterations and activation functions, the neural network
“learns” the patterns in the data. Go through enough iterations
and the machine learning model will literally memorize the
data [2][3][6]. This is called over fitting and is not discussed
in this paper but proper steps should be taken to strictly avoid
overfitting of models.

The illustration shown in figure 4 only shows 8 inputs to the
neural network that can then be used to predict a single output.
Neural networks, however, are able to accept many inputs and
still provide highly accurate models, even thousands of inputs
in some cases. Just as it can take in many inputs, neural
networks can also provide one or many outputs. The ability to
provide many outputs is of tremendous value for our use case
and will discuss why later.

While neural network models can provide spectacular
results given complex data sets, they are not without
weakness. In current modern tool sets, neural network models
are a bit of a “black box” approach. Because of the highly
complex math involving linear algebra, matrix math, and the
sheer number of calculations under the hood, it is difficult to
reverse engineer a neural network model. Another way to say
this is, it is difficult to understand why a machine learning
algorithm made a particular decision. There is much work in
the academia and research space to overcome this but most of
this work is in the development phase at the time of this
writing.

IV. APPLYING ANN

In this section we will apply an ANN to a data set and
illustrate its performance. For this writing, the Keras package
is being used in R, to access the TensorFlow backend. The
methods used are nearly identical to what is provided in [3].
TensorFlow is a language specifically designed to do machine
learning. It was originally developed by Google and made
available freely as open source software in 2016.

The following examples will apply a regression approach to
machine learning utilizing a (64,64,64,32,16,1) network with a
rectified linear unit activation function. This implies that the
ANN input layer is 64 nodes wide, it has six layers total, and
the last layer only has one output node. Inputs and features to
this model will include CQI, PRB, Volume, PDCCH, and
users.

The data set used for training in this example contains
64,000 points from a 5MHz network that is stratified across
loading levels to obtain equal distribution of points across all
loading levels. It is the same data set shown in the multivariate
regression example previously.

Furthermore, the data set is broken into a training set and a
test set. 25% of the points are withheld to make up the test set
and 75% of the points are retained training, just as was done
previously.
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For this paper, the training is allowed to run for 10 epochs.
More can be learned on this and the dangers of over fitting
from Allaire in [3].

To prepare the data for the neural network, standard scaling
practices are followed per the methods in [3]. This transforms
the data of each metric to form a distribution of points
normally distributed around a mean of zero so that scales of
each metric are similar.

Upon completion of the training period, the model is applied
to the test set. This is an important step in the process as the
test set is a completely unknown set of data. This will provide
guidance on how well the model will generalize to unknown
data sets. Since the actual measured values are known in the
test data set, we can compare the measured values to the
predicted values to understand the deltas. To understand this it
is helpful to look at two metrics, mean error and mean
absolute error. Mean error will indicate whether the model is
generally under predicting or over predicting. Mean absolute
error (MAE) will indicate the magnitude of the errors (without
direction) to reveal the overall accuracy.

Upon completing the training period and applying the model
to the test set, we are able to see that the mean error of the
model on the test set is -31 kbps and the MAE is 482 kbps.
Figure 5 helps visualize this by plotting the predicted values
against the measured values. If the performance of the model
was perfect, all the points would fall on a line with a slope of 1
as shown by the yellow line.

ANN Modeling
Measured vs Predicted Throughputs
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Fig 5. Comparison of measured values (x-axis) to values predicted by the ANN
model (y-axis)

Comparing these results to the traditional methods of the
previous discussion, the model already looks much better.
How well does it perform in the area of interest though as
discussed previously? Let’s assume a 1 Mbps threshold again.
To inspect this closer we use figure 6 which provides a
narrowed view of the 0 to 2 Mbps region and provides it as a
boxplot for ease of interpretation. At a 1 Mbps measured

value, the error is +/- 150 kbps, much better than achieved
previously.
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Fig. 6. Comparison of measured throughput values to ANN model predicted
values. In units of kbps.
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Assuming this level of performance is acceptable, the model
could be deployed to any platform or language utilizing the
TensorFlow backend. This includes R, Python, and of course
TensorFlow itself [3]. If these results are not deemed to be
acceptable, further work may be needed. This could include
modifying the neural network architecture to add more layers
or nodes, although improvements from this will depend highly
on the data set and type of problem. It may mean adding more
or different inputs to the model. Other methods prior to
applying machine learning could also be employed to ensure
the model is using the metrics which are the largest
contributors to predicting throughput so that you may choose
the top N predictors for neural network inputs. In general
using the least number of predictors required to achieve usable
results is recommended, particularly when applying these
results to forecasting which is discussed in the next section.

V. FORECASTING THROUGHPUTS

Forecasting at its simplest is using a time series to predict
the future. This often involves simple to complex algorithms.
A common approach in many industries, telecom included, is
to use approaches such as seasonally adjusted ARIMA models
or exponential smoothing (ETS) [9][10]. If this is generally
accepted in practice, why then, can we not forecast throughput
itself as a simple time series if we have historical data?

While it is not the focus of this paper, throughput as a
function of load has an exponential decay to it based on many
factors. This by itself could probably be overcome. However,
the rate of this decay depends on many factors such as, but not
limited to: hardware, bandwidth, channel quality, and vendor
type just to name a few. There would be an infinite number of
“curves” that would have to be indexed and stored for later
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retrieval. Traditional methods of ARIMA and exponential
methods will tend towards linear forecasts (seasonal
components aside). Furthermore, they are heavily affected by
any trends that develop late in the time series. They are
therefore not well suited by themselves to predict throughput
well into long term time horizons.

ARIMA and smoothing methods, however, do work well on
predicting individual metrics which do tend to have linear
growth with some seasonal component (excluding outside
influences) such as volume, PDCCH, PRB, users, etc. With
this in mind, the individual metrics can be forecasted into the
future. Using the neural network model constructed
previously, forecasted metric values can be fed to the model to
get future predicted throughputs. A visualization of this flow
can be seen in figure 7.
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Fig. 7. Example of forecasted metrics being fed into a neural network model
to produce future forecasted throughput values.

VIl. PERFORMANCE

To quantify the accuracy performance of using ANN
models in forecasting as previously described, an analysis was
completed on a set of 10,000 random cells. Two years of
monthly data was available as historical data for metrics
discussed previously (including throughput). A time series
forecast was created for each metric for each cell using 18
months of data while the most recent six months of data was
used as a holdout set.

Using models tuned with the methods previously discussed,
the ANN models are applied to the forecasted metrics for each
cell. This provides a forecasted throughput value alongside a
known throughput value. Comparing these two values will
quantify the amount of error. For this discussion, a positive
value of error will indicate over-forecasting while a negative
value will indicate under-forecasting. Table 1 below
summarizes these results as a percentage of error. The “Time
Series” method utilized a multivariate ARIMA method that
forecasted the individual metrics as well as throughput. The
“ANN on TS” method applied a neural network model tuned
as shown in section four to the individual metrics that were
forecasted using the same multivariate approach.

5
Mean Median
Mean Median Abs Abs
Method Error% | Error% | Error% | Error %
Time Series -5.0% 4.8% 43.0% 31.0%
ANNon TS 20.0% 5.0% 37.0% 27.0%

Table 1. Summary of results comparing time series forecasting and
application of ANN models to the time series.

The results from table 1 imply that the median errors are
nearly the same when comparing time series only forecasting
to use of ANN models. However the mean error also
illustrates that the bias of the time series only forecasting is to
under forecast while the bias of the ANN models is to over
forecast. In this case it is important to be clear that the time
series only forecast would trigger more capacity triggers as it
is driving throughputs down more aggressively. The
application of the ANN model would trigger less capacity
needs because it is biased towards maintaining higher
throughput due to slight over forecasting. Somewhere in
between is where the reality will be.

Given the above interpretation, an illustration of the general
bias can be provided. In figure 8 below, a sample forecast is
provided. “Historical” values are the actual historical values of
the throughput. “Thput ANN_Historical” is the predicted
throughput from the ANN model using historical metrics. In
this case, the throughput model performs very well on known
historical metrics. Each of those metrics is forecasted as a time
series. The throughput itself is also forecasted as a time series
and provided in figure 8 as “forecasted”. The ANN model is
also applied to the forecasted metrics and provided as
“Thput ANN_Forecasted”.

period
forecasted

— historical

—— Thput_ ANN_Forecasted
Thput_ ANN_Historical

DL _DATA_THROUGHPUT

2018 2019 2020

DATE_TIME
Fig. 8. Example scenario comparing response of a time series only forecast
to that of a time series forecast with ANN applied.

Through this illustration in figure 8, it is shown that the time
series only forecast picks up on a recent decline in the
throughput time series and predicts a more aggressive decline
than when the ANN is applied. The ANN model takes into
account the rate of growth of all the other metrics and predicts
that the decline in throughput will not be as aggressive and the
rate of decline will actually slow down as time goes on.
During testing, inspection of thousands of these cells revealed
this same scenario across the board.

VIIl. EXPECTATIONS
It is important to understand the expectations of ANN
modeling and be aware of what it can and cannot be expected
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to do. As discussed previously, an ANN model is somewhat of
a black box approach. It is difficult to extract why a model
made the decision that it did. For example, it would not be
possible to generalize from the model what an increase in a
single metric would do to throughput values. One can arrive at
the answer by transforming the data and re-applying the model
to obtain new outputs. However, it is not possible to come up
with a static description of what happens under certain
conditions. This may not be an issue for the use case we have
discussed here, but what if your model must be clearly
understood and clearly interpretable? For example, what if
regulatory requirements required that a company must be able
to explain why and how a model behaves for each specific
piece of criteria? This is the case for industries such as credit
ratings [3]. In this case, ANN models may be powerful tools,
but they cannot be used due to the lack of interpretability
required by regulation.

In terms of overall maintenance, these models are also not a
deploy-and-walkaway scenario either, at least for the proposed
use case. Behaviors may change over time. It is not
necessarily expected that the model needs to be trained before
each use, but it should be validated against a new test data set
at a minimum. This validation process could even be
automated into reports to speed the process but an engineer
must still look at it and assess model performance.
Appropriate thresholds could be applied to determine ahead of
time that the model will need to be retrained whenever it falls
outside a certain range of accuracy. This retraining process
could be as simple as pulling more recent data to train from or
could require adding new metrics to the training data.

VIIl. OTHER APPLICATIONS

The power of neural network modeling lies not only in its
ability to accurately model throughput, but also in its vast
flexibility. If new metrics become necessary, they can quickly
be added to the model and the model can be redeployed. Also
recall that the model can have multiple outputs.

The flexibility of the model in this regard is important to
operators. Operators are becoming more active in shaping the
network experience with things like rate shaping, service
differentiation, deep packet inspection to prioritize services,
etc. Other concepts are also beginning to emerge that have not
been implemented yet such as 5G, network slicing, etc. These
tools, while very useful to the operators and beneficial to
users, makes modeling throughputs all that more complex
because active interventions are taking place that would
otherwise be extremely difficult to account for in traditional
methods. With a little creativity, most of these interventions
can usually be inserted into data sets as features to be used in
training a neural network model [3].

In the case of prioritization, QCI (quality class indicator)
management can be an effective tool. However, this means an
operator must be able to predict throughput for each QCI for it
to work. Implementation and configuration strategies for
doing this are not in the scope of this paper and could be an
entire topic in itself. In the context of this paper, this means an
operator must produce multiple outputs from one model. That

is, one throughput per user prediction for each QCI class. In
current 4G implementations, this means a minimum of 9
outputs from a single model and possibly more depending on
operator implementations. As we have already discussed, this
is very possible for neural networks. Certainly, more inputs
will be required to arrive at this as there may be separate
inputs for each QCI class for metrics such as volume, users,
etc. If we started with 8 inputs, and provide QCI metrics for 3
of them, the number of inputs increases to 32. This
significantly increases the number of inputs to the model but
neural networks are well suited to handle this. This begins to
demonstrate that neural networks may be a nice to have tool
for now, but will become an essential requirement for
planning in the future.

In the case of concepts like network slicing, the network is
virtualized and appears as if it’s an entire network dedicated to
a particular user group. Each group may have their own
behaviors and growth rates. However, they still share the same
physical resources and therefore must be considered as a
whole when developing capacity planning strategies. It
remains to be seen how many network “slices” might exist in
the future, but let’s consider only three slices with QCI
implementations on each. We stated previously that QCI
implementations by itself increase the number of inputs to 32
and outputs to 9. But now we have three network slices to
contend with. We now have 96 inputs and 27 outputs for every
single cell in the network. This is of course without even
considering 5G which may also share radios, basebands, and
other types of hardware.

IX. CONCLUSIONS

Neural networks provide an amazing opportunity to solve
problems that would have been otherwise unsolvable using
traditional methods. The only way to solve these in the past
was to literally have an engineer review each case and apply
their knowledge of the network and market space to make an
educated, fact based decision. Looking into the future as
networks become far more complex, this is not sustainable nor
is it effective.

In this case the power of neural networks will not replace an
engineer. Rather, it will augment the engineer’s ability to
make quicker, more educated decisions, and also do it more
consistently. It allows the engineer to scoop the complexity
into the model to keep it from becoming a distraction. The
complexity is still there, and will continue to get more
complex, it is just allowing the engineer to focus more on the
outputs and results. It is still important for each engineer to
understand these complex interactions. The model can be
revisited and even trained in a supervised fashion in real time
if needed. The important thing is that the model can be
revisited and retrained on an as needed basis and the engineer
does not need to consider or store every bit of the information
for every single decision that is made for every cell during the
capacity planning process.

Lastly, while forecasting accuracy itself is not within the
scope of this paper, it can’t be left unsaid that the effectiveness
of this work is dependent on the accuracy of the forecasting
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methodologies. Every operator should have a good
understanding of what they are able to expect (and not expect)
from their forecasting algorithms in terms of accuracy. While
ARIMA and ETS methods are common solutions for many
industries, neural networks can also do time series forecasting.
Feed forward networks (FFN) were the type of neural network
used in this paper. However, recurrent neural networks (RNN)
have been very popular in many forecasting competitions and
often take first place or top spots among such events. Study of
forecasting accuracy and modern day RNN’s could be an area
of study that could extend this work to further enhance its
effectiveness
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